mace_fitting#
- autoplex.fitting.common.utils.mace_fitting(db_dir, path_to_hyperparameters=MLIP_RSS_DEFAULTS_FILE_PATH, device='cuda', ref_energy_name='REF_energy', ref_force_name='REF_forces', ref_virial_name='REF_virial', use_defaults=True, fit_kwargs=None)[source]#
Perform the MACE potential fitting.
This function sets up and executes a python script to perform MACE fitting using specified parameters and input data located in the provided directory. It handles the input/output of atomic configurations, sets up the NequIP model, and calculates training and testing errors after fitting.
- Parameters:
db_dir (Path) – directory containing the training and testing data files.
path_to_hyperparameters (str or Path.) – Path to JSON file containing the MACE hyperparameters.
device (str) – specify device to use cuda or cpu.
ref_energy_name (str, optional) – Reference energy name.
ref_force_name (str, optional) – Reference force name.
ref_virial_name (str, optional) – Reference virial name.
fit_kwargs (dict.) – optional dictionary with parameters for mace fitting with keys same as mlip-rss-defaults.json.
- Keyword Arguments:
model (str) – type of model to be trained
config_type_weights (str) – weights of config types
hidden_irreps (str) – control the model size
r_max (float) – cutoff radius controls the locality of the model
batch_size (int) – batch size (note that batch size cannot be larger than the size of training datasets)
start_swa (str) – if the keyword –swa is enabled, the energy weight of the loss is increased for the last ~20% of the training epochs (from –start_swa epochs)
correlation (int) – correlation order corresponds to the order that MACE induces at each layer
loss (str) – loss functions
default_dtype (str) – type of float to use, e.g. float32 and float64
- Returns:
A dictionary containing train_error, test_error, and the path to the fitted MLIP.
- Return type:
dict[str, float]